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David T. Barr and Michael P. Cleary, "Thermoelastic fracture solutions
using distributions of singular influence functions-II, Numerical modelling

of thermally self-driven cracks", Int. J. Solids Structures,
Vol. 19, No.1, pp. 83-91 (1983)

For possible application to the "Hot Dry Rock" geothermal system, the authors[l] consider
an infinite array of equally spaced parallel (planar) cracks of common initial length, growing
at a common rate because of the cooling induced by heat extraction (a two-dimensional
problem). On the basis of this model, they seem to suggest that initially equal parallel
cracks can continue to grow at a common rate (i.e. remain of equal length), once their
common length exceeds twice their common spacing.

I wish to point out that a more complete analysis which would permit the possibility
of unequal crack growth would immediately reveal that parallel cracks driven by thermal
cooling do not remain of equal length, once their common length attains a critical value
(measured in terms of crack spacing as the unit length). Therefore, the only reason the
authors do not predict unequal crack growth in their calculations is that they a priori
preclude this possibility by assuming that all cracks remain of the same length throughout
the entire growth process.

As has been shown both theoretically and experimentally by this writer and co­
workers[2-5], the growth pattern of parallel cracks driven in linearly elastic brittle solids
by convective or conductive (or a combination of both) cooling, inevitably involves unequal
crack lengths, unless one precludes this possibility in the analysis by allowing for only one
common crack length, as do the authors. This fact can be easily established for the most
general temperature field that may be generated by convective, conductive, or a combination
of both, heat extraction processes.

To show this, consider an infinite array of parallel edge cracks, and allow for the
possibility of unequal crack growth, in the manner sketched in Fig. I: every other crack is
of length L 1, the others are of length L2; the case of equal cracks then is the special one
with L1 = L2 = 1. Let at an instant the temperature field be denoted by () = ()(x,y), with
appropriate symmetry corresponding to Fig. I,

In view of symmetry, only the opening mode stress intensity factor controls the
fracture process. Let Ki = Kj(L I' L2; O(x, y), i = 1,2, be the stress intensity factor at the tip
of the ith crack, and observe that Kj is a functional of the temperature field O(x, y).

For both cracks to continue to be active, it is necessary that

(1)

where K< is the critical value of the stress intensity factor. The solution of eqns (I) gives,
as the temperature field 0 is varied, the common (equilibrium) crack length, L1 = L2 = 1.
Since, at a fixed temperature field, we have, in general
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(2)

the crack growth is stahle, in the sensc that for an incremental growth, an incremen\ of heal
must be removed.

This, however, does not mean that the equal crack growth pattern is energetically
preferred no mutter what the common crack length L may be.

In fact, since the equilibrium conditions (1) must be maintained for continued crack
growth induced by variations "O(x,y) in the temperature field, we must have (because Kc

is assumed constant)

(3)

where "eKj> 0 is the change (in the functional sense) in Kj produced by the variation
(because of the heat removal) in the temperature field, bO(x,y), at constant L1 and L2 •

Furthermore, for strain-controlled problems of this kind, we always have

iJKj:J(O to( )fi diJL. """ a x,y txe ,
J

i,j = 1,2. (4)

At given equilibrium states with K I = K2 = Kc and L1 = L2 = L, eqns (3) yield the
unique solution dL 1 = dL2 = dL, as long as the determinant of the coefficients of dL I and
dL2 is positive. However, once the condition

(5)

is satisfied, then another solution with, say, dL2 =°and dL I > 0, becomes possible. It is
easy to show, see Nemat-Nasser et al.[3J, that this new solution also involves stable crack
growth, i.e. to increase L. at constant L 2 , an increment of energy must be removed and,
hence "eKj > 0. However, if condition (5) is satisfied, then the solution dL2 = 0, dL I > 0,
is energetically preferred, because it leads to a smaller stored elastic energy than the solution
with dL I = dL2 :F 0. These facts have been thoroughly discussed and illustrated by this
writer and co~workers in a series of papers, see, e.g. Refs [2-5]. They are also supported
by experimental observations. An example taken from Geyer and Nemat-Nasser(4] is
shown in Fig. 2.

Indeed, thermal cracks of the kind discussed by the authors arc very much similar to
the shrinkage cracks observed in wood, in concrete, or in dried-up clay deposits. One
invariably observes a nested sequence of cracks, which involves many shallow c1osely­
spaced cracks of more or less hexagonal pattern, encompassed by deeper and further apart
cracks, leading to large, deep cracks of a similar pattern. The example of Fig. 2 is a two­
dimensional nested crack pattern of this kind.

It therefore seems that, while the results presented by the authors are interesting, they
only apply to the very beginning of the process of thermally induced crack growth, where
the common crack length is rather small relative to the common crack spacing, and not
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Fig. 2. Crack regime for plate with initial cracks; crack ends are marked at the end of the experiment
(from Geyer and Nemal-Nasser[4]).
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to the case where the common crack length is large relative to the spacing, contrary to
what is suggested by the authors.
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The stability arguments presented in the above Discussion do not apply universally to all
crack arrays in all situations. As an extreme case, for which the stated crack behaviors are
not obtained, one may consider an array such as illustrated in Fig. I of the Discussion,
but for which cooling of the solid is restricted to the regions immediately surrounding the
tips of the shorter cracks, with the longer cracks being heated at their tips. In this instance,
the shorter (cooled) cracks would propagate and the longer (heated) cracks would not.
Many other such counterexamples can be identified; clearly the stability arguments of the
Discussion require very special conditions (e.g. one-dimensional temperature distributions)
if they are to hold.

In particular, the conclusions reached in the Discussion do not apply to the arrays of
self-driven cracks studied by the authors[l]. There is an essential and important difference
between the self-driven cracks and the crack arrays cited in the above Discussion. The
analyses of these latter cracks (although they are intended to include the effects of convective
fluid flow), consider only one-dimensional temperature fields. The self-driven cracks, on
the other hand, experience a temperature distribution which is strongly two-dimensional,
with regions of cooling being localized, to varying degrees,' near the crack surfaces. While
a formal stability analysis of the self-driven crack array has not been carried out, it is clear
that the two-dimensionality of the temperature distribution is of fundamental importance,
and the results of stability analyses, for cases in which the temperature field is one­
dimensional, are not necessarily relevant. In fact, there is good reason to believe that such
an array of self-driven cracks would propagate stably (i.e. with all cracks moving at the
same speed), as will now be shown.

Consider an infinite array of identical, parallel cracks propagating with a common
velocity v away from the surface of a half space (Fig. I). The crack spacing s is much less
than the crack lengths, the half space is initially at a uniform temperature To, and a


